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The product of pi, π=3.1415…, and phi, the Golden Ratio: φ= (1 + √5)/2 , 

can be interpreted as the circumference of a circle with a diameter of phi.  Is 

this the ‘Golden Circle’?  Huntley, in his book The Divine Proportion 

(Dover, 1970), encourages us to show that the curved surface area of a 

cone, with this circular base and a slant side length of one unit, is πφ/2 

square units.  If two of these cones had their bases fused together then this 

“Golden Object” would have a curved surface area of πφ square units.  He 

also informs us that the Golden Ellipse, minor axis of unit length and major 

axis of length phi, encloses a region of πφ square units.  A circle with a 

radius equal to the geometric mean of the major and minor axes of the 

Golden Ellipse, i.e. the square root of the Golden Ratio, would also enclose 

an area of πφ square units. Should this circle be considered the Golden 

Circle?  Our preference for the title Golden Circle would be the former, but 

it is the pi-phi product that we are interested in this note.  

 

We have found that the pi-phi product can be expressed as four times the 

limit of an infinite series, SB: 

          ∞ 

  SB  =  1 + ∑ ak { 1/(F2k-1 + φ F2k)} 

      
k=1

       …1 

 

where Fk represent the Fibonacci numbers (F1 = 1, F2 = 1, F3 =2,…), 

ak = bk + ck , bk = (-1)
k
/(2k+1), and ck = 0 except when k=3m+1, (m=0,1,…) 

then c3m+1 = bm .  We have attempted to find this relationship in the 

literature but to date have been unsuccessful.  We did notice a couple of 

infinite series involving the reciprocal of the Fibonacci numbers listed in a 

text by Vajda , Fibonacci and Lucas Numbers and the Golden Section 

(Halsted Press, 1989) but these turned out to have limits of phi but pi 

nowhere in sight: 

        ∞          ∞ 

 4 - ∑ (1/F2^k) = φ = 1 + ∑ (-1)
k
 { 1/ Fk Fk-1} 

     
k=0

        
k=2

      …2 



Vajda also provides an infinite series involving the sum of arctangent 

functions each of which contains the reciprocal of a Fibonacci number with 

an odd numbered index.  This sum converges to one quarter of pi: 

             ∞ 

   π/4 = ∑ arctan( 1/ F2k+1) 

         
k=1

       …3 

Clearly, infinite series containing reciprocals of the Fibonacci numbers 

exist but these do not converge to the pi-phi product.  If it turns out that the 

sum SB has not been observed, we would like to call it the Biwabik Sum in 

honor of the small northern Minnesota town in which both of us were 

raised.  But where did this Biwabik Sum come from? 

 

One of us (Oberg) noticed an interesting relationship between pi and phi 

while contemplating geometric questions related to the location of the King 

and Queen’s burial chambers in the Great Pyramid (Cheops of Giza, 

Egypt).  The essence of his geometric construction plan for the pyramid is 

shown in Fig. 1.  The geometry leads to a pyramid angle of ϕ = arctan( √φ ) 

or ϕ = 51.827° (51°49’38”).  This angle shows up in ancient diagrams 

involving the Golden Ratio (Lawlor, Scared Geometry: Philosophy and 

Practice, Thomas and Hudson, 1982) and seems to be a commonly 

accepted theoretical value for the pyramid angles (Banks, Slicing pizzas, 

Racing Turtles and Further Adventures in Applied Mathematics, Princeton 

University Press, 1999). The value is in close agreement with the measured 

value of ϕ = 51.838° (51°50’15”) determined from the dimensions of the 

Great Pyramid, base = 756 ft. and height = 481 ft., as given by Gillings, 

Mathematics in the Time of the Pharaohs, MIT Press, 1972.  As an aside, 

Gillings also uncovers a theoretical value of a hypothetical pyramid angle in 

problem 56 of the Rhind Mathematical Papyrus, i.e. ϕ = arctan(7 palms/ (5 

+ 1/25) palms ) = 54.246° (54°14’46”).  A slight change in the geometry of 

Oberg’s construction, Fig. 1f, leads to ϕ = arctan ( (1 + √(8φ-11)(13-8φ) 

)/(8φ-12) ) = 54.609° (54°36’33”). 

 

Out of this quest to rationalize the design of the Great Pyramid came a 

diagram that ultimately led to the so called Oberg Formula, Fig 2.  The 

other one of us (Johnson) noted that this formula could be obtained from an 

arctangent expression attributed to Euler (see Beckmann, A History of Pi 

(Golem, 1977), p.154), Fig. 3., by inserting p = 1 and q = 1 + φ into the 

Euler expression.  Parenthetically, the same Euler expression can be used to 

derive eq. 3 by letting p = F2k and q = F2k+1. 



Since a sequence of arctangent relationships follow: 

 

  arctan(1/1) = arctan(1/2)  + arctan(1/3), 

  arctan(1/3) = arctan(1/5)  + arctan(1/8), 

  arctan(1/8) = arctan(1/13)+ arctan(1/21),  … 

 

these can be combined to produce  eq. 3.   

 

Getting back to the Oberg Formula, it is simply a matter of using the 

Gregory series for the arctangent function, employing few identities 

involving the Golden Ratio and Fibonacci Numbers and the Biwabik Sum 

emerges quite naturally: 

π φ = 22{1 + [(2/3)/(F1+F2φ)  +  (1/5)/(F3+F4φ)  -  (1/7)/(F5+F6φ)] 
 

   - [(2/9)/(F7+F8φ)  +  (1/11)/(F9+F10φ) - (1/13)/(F11+F12φ)] 
 

  + [(2/15)/(F13+F14φ) + (1/17)/(F15+F16φ) - (1/19)/(F17+F18φ)] 

- …  } 

 
=  5.083203692.... 

         …4 
 

(the Biwabik Sum, SB, is the expression between the curly braces) 

 

It is clear that pi-phi product, the circumference of the proposed Golden 

Circle, is related to the Golden Ratio, the number two (the only even 

prime), the set of all odd numbers and the set of all Fibonacci numbers; 

each member of these two sets making a single appearance in the sum. 

 

It would be aesthetically pleasing if the pi-phi product could be calculated 

in terms of only whole numbers. This can be done by replacing the Golden 

Ratio in the Biwabik Sum with Pn + 1 = Pn - 1/F2^n (P0= 4) and defining the 

partial sums by  

       n 

   Sn = 1 + ∑ ak { 1/(F2k-1 + PnF2k) } 

        
k=1

 

          …5 

(where the ak’s are the same as those in eq. 1).  Now the limit of these 

partial sums will be πφ/4 as n goes to infinity. 



 

Finally, we note that the Oberg formula is a special case of a more general 

problem.  The Euler arctan formula with p = 1 and q = (1/z)
n
 –1 becomes, 

after defining (1/z)
m
 = (z

n
-1)/(z

n
+1) : 

 

   π/4 = arctan( (1/z)
n
 ) + arctan( (1/z)

m
 ) 

          …6 

As a consequence, for any combination of the whole numbers n and m, the 

roots, z = z0(n,m), of the polynomial z
m+n

 – z
m
 – z

n
 – 1 will produce two 

angles whose sum will be π/4, i.e. π/4 = θ1 + θ2  where tan θ1 = (1/z0)
n
 and 

tan θ2 = (1/z0)
m
 .  From this relationship it is easy to see that there are a 

countably infinite number of infinite series, the terms of which would have 

the form Ak/(z0(n,m)
k
 with the constants Ak being determined by the 

superposition of like powers of z0 in the two Gregory series expansions for 

the arctangent functions.  Roots for a few n and m combinations are shown 

graphically in Fig. 4.  The actual numerical values are given in Table 1 

which were found using Newton’s method of locating roots.  For three 

cases, we found simple expressions to compute the values for the roots:  

z0(1,1) = 1+ √2,  z0(1,2) = (1 + s1 + s2)/3 with s1,2 = (19 +or- 3√33)^(1/3) 

and z0(1,3) = (1 + √5)/2 = φ (Oberg case) but have been unable to find 

expressions for the other roots. 

 

In this note we have shown that the pi-phi product can be expressed as an 

infinite series involving the Fibonacci numbers, the Golden Ratio and the 

odd integers.  A sequence of partial sums involving only the odd integers 

and Fibonacci numbers can also be shown to yield the pi-phi product in the 

limit.  The series was obtained from the Oberg formula which turns out to 

be a particular case of a broader class of problems dealing with the roots of 

a polynomial of a certain form.  We have no idea whether or not there may 

be other interesting aspects of this broader class of problems.  It appears 

that phi is the root only for the n=1 and m=3 case, but does it show up as 

part of a factor of other roots, such as a+bφ?  Are there any rational number 

solutions for the roots?  Or can the values of the roots be determined by 

relatively simple expressions like the three we found?  We do not have the 

answers to these questions. 

-- -- -- 



Table 1  Some roots, z0(n,m), of the polynomial z
n+m

 – z
m

 – z
n
 – 1 

      and corresponding angles: cot(θ1)=(z0)
n
 and cot(θ2)=(z0)

m
 

 

 n m  z0   θ1     θ2 

      deg   min  sec      deg   min  sec 

______  ______  __________    _____________     

____________ 

 

 1 1     2.41421
(1)

  22    30    00   22    30    00 

 

 1 2     1.83929
(2)

  28    31    57   16    28    03 

  3     1.61803
(3)

  31    43    03   13    16    57 

  4     1.49709   33    44    29   11    15    31 

  5     1.41963   35    09    40   09    50    20 

 

 2 3     1.42911   26    05    16   18    54    44 

  4     1.35620   28    31    57   16    28    03 

  5     1.30740   30    19    46   14    40    14 

 

 3 4     1.28845   25    03    24   19    56    36 

  5     1.25207   26    59    49   18    00    11 

 

 4 5     1.21728  24    29    12   20    30    48 

 

(1) ( 1 + √2 ) 

(2) ( 1 + ( 19 + 3√33)^(1/3) + ( 19 - 3√33)^(1/3) ) / 3 

(3) ( 1 +√5 ) / 2 

 



 

 

     



 

 



 

    



 

    



 

    

 


